User guide
Table Of Contents
- Cyclone V Hard IP for PCI Express User Guide
- Contents
- 1. Datasheet
- 2. Getting Started with the Cyclone V Hard IP for PCI Express
- 3. Getting Started with the Avalon-MM Cyclone Hard IP for PCI Express
- Running Qsys
- Customizing the Cyclone VHard IP for PCI Express IP Core
- Adding the Remaining Components to the Qsys System
- Completing the Connections in Qsys
- Specifying Clocks and Interrupts
- Specifying Exported Interfaces
- Specifying Address Assignments
- Simulating the Example Design
- Simulating the Single DWord Design
- Understanding Channel Placement Guidelines
- Adding Synopsis Design Constraints
- Creating a Quartus II Project
- Compiling the Design
- Programming a Device
- 4. Parameter Settings for the Cyclone V Hard IP for PCI Express
- 5. Parameter Settings for the Avalon-MM Cyclone V Hard IP for PCI Express
- 6. IP Core Architecture
- Key Interfaces
- Protocol Layers
- Multi-Function Support
- PCI Express Avalon-MM Bridge
- Avalon-MM Bridge TLPs
- Avalon-MM-to-PCI Express Write Requests
- Avalon-MM-to-PCI Express Upstream Read Requests
- PCI Express-to-Avalon-MM Read Completions
- PCI Express-to-Avalon-MM Downstream Write Requests
- PCI Express-to-Avalon-MM Downstream Read Requests
- Avalon-MM-to-PCI Express Read Completions
- PCI Express-to-Avalon-MM Address Translation for Endpoints
- Minimizing BAR Sizes and the PCIe Address Space
- Avalon-MM-to-PCI Express Address Translation Algorithm
- Single DWord Completer Endpoint
- 7. IP Core Interfaces
- Cyclone V Hard IP for PCI Express
- Avalon-MM Hard IP for PCI Express
- Physical Layer Interface Signals
- Test Signals
- 8. Register Descriptions
- Configuration Space Register Content
- Altera-Defined Vendor Specific Extended Capability (VSEC)
- PCI Express Avalon-MM Bridge Control Register Access Content
- Avalon-MM to PCI Express Interrupt Registers
- PCI Express Mailbox Registers
- Avalon-MM-to-PCI Express Address Translation Table
- Root Port TLP Data Registers
- Programming Model for Avalon-MM Root Port
- PCI Express to Avalon-MM Interrupt Status and Enable Registers for Root Ports
- PCI Express to Avalon-MM Interrupt Status and Enable Registers for Endpoints
- Avalon-MM Mailbox Registers
- Correspondence between Configuration Space Registers and the PCIe Spec 2.1
- 9. Reset and Clocks
- 10. Transaction Layer Protocol (TLP) Details
- 11. Interrupts
- Interrupts for Endpoints Using the Avalon-ST Application Interface
- Interrupts for Root Ports Using the Avalon-ST Interface to the Application Layer
- Interrupts for Endpoints Using the Avalon-MM Interface to the Application Layer
- Interrupts for End Points Using the Avalon-MM Interface with Multiple MSI/MSI-X Support
- 12. Optional Features
- 13. Flow Control
- 14. Error Handling
- 15. Transceiver PHY IP Reconfiguration
- 16. SDC Timing Constraints
- 17. Testbench and Design Example
- Endpoint Testbench
- Root Port Testbench
- Chaining DMA Design Examples
- Test Driver Module
- Root Port Design Example
- Root Port BFM
- BFM Procedures and Functions
- 18. Debugging
- A. Transaction Layer Packet (TLP) Header Formats
- Additional Information

Chapter 7: IP Core Interfaces 7–9
Cyclone V Hard IP for PCI Express
December 2013 Altera Corporation Cyclone V Hard IP for PCI Express
User Guide
f For more information about the Avalon-ST protocol, refer to the Avalon Interface
Specifications.
Data Alignment and Timing for the 64-Bit Avalon-ST RX Interface
Figure 7–5 illustrates the mapping of Avalon-ST RX packets to PCI Express TLPs for a
three dword header with non-qword aligned addresses with a 64-bit bus. In this
example, the byte address is unaligned and ends with 0x4, causing the first data to
correspond to
rx_st_data[63:32]
.
1 The Avalon-ST protocol, as defined in Avalon Interface Specifications, is big endian,
while the Hard IP for PCI Express packs symbols into words in little endian format.
Consequently, you cannot use the standard data format adapters available in Qsys.
rx_st_be
8
16
O
component
specific
Byte enables corresponding to the
rx_st_data
. The byte
enable signals only apply to PCI Express TLP payload fields.
When using 64-bit Avalon-ST bus, the width of
rx_st_be
is 8
bits. This signal is optional. You can derive the same
information by decoding the
FBE
and
LBE
fields in the TLP
header. The byte enable bits correspond to data bytes as
follows:
rx_st_data[127:120]
=
rx_st_be[15]
rx_st_data[119:112]
=
rx_st_be[14]
rx_st_data[111:104]
=
rx_st_be[13]
rx_st_data[103:96]
=
rx_st_be[12]
rx_st_data[95:88]
=
rx_st_be[11]
rx_st_data[87:80]
=
rx_st_be[10]
rx_st_data[79:72]
=
rx_st_be[9]
rx_st_data[71:64]
=
rx_st_be[8]rx_st_data[63:56]
=
rx_st_be[7]
rx_st_data[55:48]
=
rx_st_be[6]
rx_st_data[47:40]
=
rx_st_be[5]
rx_st_data[39:32]
=
rx_st_be[4]
rx_st_data[31:24]
=
rx_st_be[3]
rx_st_data[23:16]
=
rx_st_be[2]
rx_st_data[15:8]
=
rx_st_be[1]
rx_st_data[7:0]
=
rx_st_be[0]
This signal is deprecated.
rx_bar_dec_func_num
3O
component
specific
Specifies which function the
rx_st_bar
signal applies to.
Table 7–3. 64- or 128-Bit Avalon-ST RX Datapath (Part 4 of 4)
Signal Width Dir
Avalon-ST
Type
Description
Figure 7–5. 64-Bit Avalon-ST rx_st_data<n> Cycle Definition for 3-Dword Header TLP with Non-Qword Aligned Address
coreclkout
rx_st_data[63:32]
rx_st_data[31:0]
rx_st_sop
rx_st_eop
Header1 Data0 Data2
Header0 Header2 Data1