Specifications
4
To avoid possible explosion, the line from the
nitrogen cylinder must include a pressure regulator
and a pressure relief valve. The pressure relief valve
must be set to open at no more than 150 psig.
WARNING
Pressure test the system using dry nitrogen and soapy water
to locate leaks. If you wish to use a leak detector, charge the
system to 10 psi using the appropriate refrigerant then use
nitrogen to finish charging the system to working pressure then
apply the detector to suspect areas. If leaks are found, repair
them. After repair, repeat the pressure test. If no leaks exist,
proceed to system evacuation.
System Evacuation
Condensing unit liquid and suction valves are closed to contain
the charge within the unit. The unit is shipped with the valve
stems closed and caps installed. Do not open valves until
the system is evacuated.
REFRIGERANT UNDER PRESSURE!
Failure to follow proper procedures may cause
property damage, personal injury or death.
WARNING
1. Connect the vacuum pump with 250 micron capability to
the service valves.
2. Evacuate the system to 250 microns or less using suc-
tion and liquid service valves. Using both valves is nec-
essary as some compressors create a mechanical seal
separating the sides of the system.
3. Close pump valve and hold vacuum for 10 minutes. Typi-
cally pressure will rise during this period.
5000
4500
4000
3500
3000
2500
2000
1500
1000
500
0 1 2 3 4 5 6 7 8 9
10
LEAK(S)
PRESENT
MINUTES
V
ACUUM
IN
MICRONS
CONDENSIBLES OR SMALL
LEAK PRESENT
NO LEAKS
NO CONDENSIBLES
• If the pressure rises to 1000 microns or less and remains
steady the system is considered leak-free; proceed to
startup.
• If pressure rises above 1000 microns but holds steady
below 2000 microns, moisture and/or noncondensibles
may be present or the system may have a small leak.
Return to step 2: If the same result is encountered check
for leaks as previously indicated and repair as necessary
then repeat evacuation.
• If pressure rises above 2000 microns, a leak is present.
Check for leaks as previously indicated and repair as nec-
essary then repeat evacuation.
Refer to the Remote Condensing Unit Service Manual for more
detailed instructions on system evacuation, preliminary charge
adjustment, and final charge adjustment.
Electrical Connections
HIGH VOLTAGE!
Disconnect ALL power before servicing.
Multiple power sources may be present.
Failure to do so may cause property damage,
personal injury or death due to electric shock.
Wiring must conform with NEC or CEC and all
local codes. Undersized wires could cause
poor equipment performance, equipment damage
or fire.
WARNING
To avoid the risk of fire or equipment damage, use
copper conductors.
WARNING
NOTICE
Units with reciprocating compressors and non-bleed TXV’s
require a Hard Start Kit.
This unit is designed for three phase operation. DO NOT OP-
ERATE ON A SINGLE PHASE POWER SUPPLY. Measure
the power supply to the unit. The supply voltage must be in
agreement with the unit rating plate power requirements.
RATED
VOLTAGE
MINIMUM SUPPLY
VOLTAGE
MAXIMUM SUPPLY
VOLTAGE
208/230V 197 253
460V 414 506
The condensing unit rating plate lists pertinent electrical data
necessary for proper electrical service and overcurrent protec-
tion. Wires should be sized to limit voltage drop to 2% (max.)
from the main breaker or fuse panel to the condensing unit.
Consult the NEC, CEC, and all local codes to determine the
correct wire gauge and length. The wire size must be sufficient
to carry the Minimum Circuit Ampacity (MCA) listed on the
serial plate.
The supply voltage can be unbalanced (phase to phase) within
2%. The following formula can be used to determine the per-
centage of voltage unbalance for your unit.
Percentage
Voltage
Unbalance
=
Max. Voltage Deviation From
Average Voltage
Average Voltage








