User Manual
Table Of Contents
- PSA Spectrum Analyzers User's and Programmer's Reference
- Table of Contents
- List of Commands
- 1 Using This Document
- 2 Instrument Functions: A - L
- 3 Instrument Functions: M - O
- 4 Instrument Functions: P - Z
- 4.1 Peak Search
- 4.2 Preset
- 4.3 Print
- 4.4 Print Setup
- 4.5 Save
- 4.6 SPAN / X Scale
- 4.7 SWEEP
- 4.8 System
- 4.8.1 Show Errors
- 4.8.2 Power On/Preset
- 4.8.3 Time/Date
- 4.8.4 Alignments
- 4.8.5 Config I/O
- 4.8.6 Reference
- 4.8.7 Show System
- 4.8.8 Show Hdwr
- 4.8.9 Color Palette
- 4.8.10 Diagnostics
- 4.8.11 Restore Sys Defaults
- 4.8.12 Licensing
- 4.8.13 Personality
- 4.8.14 Service
- 4.8.15 Keyboard Lock (Remote Command Only)
- 4.8.16 Remote Message
- 4.8.17 Remote Message Turned Off
- 4.8.18 Power On Elapsed Time (Remote Command Only)
- 4.8.19 SCPI Version Query (Remote Command Only)
- 4.9 Trace/View
- 4.10 Trig
- 5 One-Button Measurement Functions
- 5.1 MEASURE (Spectrum Analysis Mode)
- 5.1.1 Command Interactions: MEASure, CONFigure, FETCh, INITiate and READ
- 5.1.2 Meas Off
- 5.1.3 Channel Power
- 5.1.4 Occupied BW
- 5.1.5 Adjacent Channel Power—ACP
- 5.1.6 Multi-Carrier Power
- 5.1.7 Power Stat CCDF
- 5.1.8 Harmonic Distortion
- 5.1.9 Burst Power
- 5.1.10 Intermod (TOI)
- 5.1.11 Spurious Emissions
- 5.1.12 Spectrum Emission Mask
- 5.1.13 Current Measurement Query (Remote Command Only)
- 5.2 Meas Control
- 5.3 Mode Setup
- 5.4 Restart
- 5.5 Single
- 5.6 Meas Setup (Adjacent Channel Power—ACP)
- 5.7 Trace/View (ACP Measurement)
- 5.8 Meas Setup (Burst Power)
- 5.9 Trace/View (Burst Power)
- 5.10 Meas Setup (ComplementaryCumulativeDistributionFunction—CCDF)
- 5.11 Display (ComplementaryCumulativeDistributionFunction—CCDF)
- 5.12 SPAN X Scale
- 5.13 Marker (ComplementaryCumulativeDistributionFunction—CCDF)
- 5.14 Meas Setup (Channel Power—CHP)
- 5.15 Trace/View (Channel Power Measurement)
- 5.16 Meas Setup (Harmonic Distortion)
- 5.17 Trace/View (Harmonics)
- 5.18 Meas Setup (Intermod (TOI))
- 5.19 Meas Setup (Multi-Carrier Power—MCP)
- 5.20 Trace/View (Multi-Carrier Power Measurement)
- 5.21 Meas Setup (Occupied Bandwidth—OBW)
- 5.22 Meas Setup (Spectrum Emissions Mask—SEM)
- 5.23 Trace/View (Spectrum Emissions Mask)
- 5.24 Display (Spectrum Emissions Mask—SEM)
- 5.25 SPAN X Scale
- 5.26 Marker (Spectrum Emissions Mask—SEM)
- 5.27 Meas Setup (Spurious Emissions)
- One - Button Measurement Functions
- 5.1 MEASURE (Spectrum Analysis Mode)
- 6 Programming Fundamentals
- SCPI Language Basics
- Improving Measurement Speed
- Turn off the display updates.
- Use binary data format instead of ASCII
- Minimize the number of GPIB transactions.
- Avoid unnecessary use of *RST.
- Put ADC Ranging in Bypass for FFT Measurements
- Minimize DUT/instrument setup changes.
- Consider using LAN instead of GPIB.
- Using an Option Mode: Minimize the number of GPIB transactions.
- Using an Option Mode: Avoid automatic attenuator setting.
- Using an Option Mode: Optimize your GSM output RF spectrum switching measurement.
- Using an Option Mode: Avoid using RFBurst trigger for single burst signals.
- Using an Option Mode: When making power measurements on multiple bursts or slots, use CALCulate:D...
- Programming Command Compatibility Across Model Numbers and Across Modes
- Using the LAN to Control the Instrument
- Programming in C Using the VTL
- Overview of the GPIB Bus
- 7 Using the STATus System
- 8 Menu Maps: Spectrum Analysis
- Alpha Editor Keys, 1 of 2
- AMPLITUDE Y Scale Key, 1 of 2 (
- Auto Couple Key, 1 of 3 (
- BW/Avg Key (
- Det/Demod Key (
- Display Key, 1 of 2 (
- File Key, 1 of 6 (
- FREQUENCY Channel Key (
- Input/Output Key (
- Marker Key (
- menu map:marker to;marker to:menu map
- Marker Fctn Key (
- MODE Key (
- Peak Search Key (
- Preset Key (
- Print Setup Key (
- SPAN X Scale Key (
- SPAN X Scale Key for CCDF Measurement (
- Sweep Key (
- System Key, 1 of 4 (
- Trace/View Key (
- Trig Key (
- 9 Menu Maps: One-Button Measurement Functions
- One-Button Measurement Menu Maps
- MEASURE Key
- Meas Control Key
- Mode Setup Key
- Mode Setup Key (2 of 2)
- ACP Measurement: Meas Setup Key
- ACP Measurement: Trace/View Key
- Burst Power Measurement: Meas Setup Key
- Burst Power Measurement: Trace/View Key
- CCDF (Power Stat) Measurement: Meas Setup Key
- CCDF (Power Stat) Measurement: Trace/View Key
- CCDF (Power Stat) Measurement: Display Key
- CCDF (Power Stat) Measurement: Span X Scale Key
- CCDF (Power Stat) Measurement: Marker Key
- Channel Power Measurement: Meas Setup Key
- Channel Power Measurement: Trace/View Key
- Harmonic Distortion Measurement: Meas Setup Key
- Harmonic Distortion Measurement: Trace/View Key
- Intermod (TOI): Meas Setup Key
- Multi-Carrier Power Measurement: Meas Setup Key
- Multi-Carrier Power Measurement: Trace/View Key
- Occupied Bandwidth Measurement: Meas Setup Key
- Spectrum Emission Mask Measurement: Meas Setup Key
- Spectrum Emission Mask Measurement: Trace/View Key
- Spectrum Emission Mask Measurement: Display Key
- Spectrum Emission Mask Measurement: Span X Scale Key
- Spectrum Emission Mask Measurement: Marker Key
- Spurious Emissions Measurement: Meas Setup Key
- One-Button Measurement Menu Maps
- Index

74 Chapter 2
Instrument Functions: A - L
Auto Couple
Instrument Functions: A - L
2.1.2.4 Manual: FFT
Manually selects FFT analysis, so it cannot change automatically to swept.
While Zero Span is selected, this key is greyed out. The status of the FFT & Swept selection
is saved when entering zero span and is restored when leaving zero span.
TIP Making Gated FFT Measurements With Your PSA
The process of making a spectrum measurement with FFTs is inherently a
“gated” process, in that the spectrum is computed from a time record of short
duration, much like a gate signal in swept-gated analysis.
The duration of the time record is 1.83 divided by the RBW, within a tolerance
of about 3% for bandwidths up through 1 MHz. Therefore, unlike swept gated
analysis, the duration of the analysis is fixed by the RBW, not by the gate
signal. Because FFT analysis is inherently faster than swept analysis, the
gated FFT measurements can have better frequency resolution (a narrower
RBW) than would swept analysis for a given duration of the signal to be
analyzed.
FFT analysis in the PSA usually involves making auto ranged
measurements, and the time required to autorange the FFT can be both long
and inconsistent. The PSA hardware automatically sets the
ADC Ranging to
Bypass when any trigger, except Free Run is selected.
The width of a single FFT measurement can be up to 10 MHz, so gated FFT
measurements can only be made for spans of 10 MHz or less.
To make a gated FFT measurement, set the analyzer as follows.
1. Press Auto Couple, FFT & Sweep to select ManuaL: FFT.
2. Set the resolution bandwidth to 1.83 divided by the required analysis time,
or higher, by pressing BW/Avg, Res BW.
3. Set the trigger source to the desired trigger, by pressing Trig.
4. Set the trigger delay to observe the signal starting at the required time
relative to the trigger. Negative delays are possible, by pressing Trig, Trig
Delay.
Key Path:
Auto Couple, FFT & Sweep
Remote Command:
Use [:SENSe]:SWEep:TYPE AUTO|FFT|SWEep
See“FFT&Sweep”onpage72.
Example: SWE:TYPE FFT