User Manual
Table Of Contents
- PSA Spectrum Analyzers User's and Programmer's Reference
- Table of Contents
- List of Commands
- 1 Using This Document
- 2 Instrument Functions: A - L
- 3 Instrument Functions: M - O
- 4 Instrument Functions: P - Z
- 4.1 Peak Search
- 4.2 Preset
- 4.3 Print
- 4.4 Print Setup
- 4.5 Save
- 4.6 SPAN / X Scale
- 4.7 SWEEP
- 4.8 System
- 4.8.1 Show Errors
- 4.8.2 Power On/Preset
- 4.8.3 Time/Date
- 4.8.4 Alignments
- 4.8.5 Config I/O
- 4.8.6 Reference
- 4.8.7 Show System
- 4.8.8 Show Hdwr
- 4.8.9 Color Palette
- 4.8.10 Diagnostics
- 4.8.11 Restore Sys Defaults
- 4.8.12 Licensing
- 4.8.13 Personality
- 4.8.14 Service
- 4.8.15 Keyboard Lock (Remote Command Only)
- 4.8.16 Remote Message
- 4.8.17 Remote Message Turned Off
- 4.8.18 Power On Elapsed Time (Remote Command Only)
- 4.8.19 SCPI Version Query (Remote Command Only)
- 4.9 Trace/View
- 4.10 Trig
- 5 One-Button Measurement Functions
- 5.1 MEASURE (Spectrum Analysis Mode)
- 5.1.1 Command Interactions: MEASure, CONFigure, FETCh, INITiate and READ
- 5.1.2 Meas Off
- 5.1.3 Channel Power
- 5.1.4 Occupied BW
- 5.1.5 Adjacent Channel Power—ACP
- 5.1.6 Multi-Carrier Power
- 5.1.7 Power Stat CCDF
- 5.1.8 Harmonic Distortion
- 5.1.9 Burst Power
- 5.1.10 Intermod (TOI)
- 5.1.11 Spurious Emissions
- 5.1.12 Spectrum Emission Mask
- 5.1.13 Current Measurement Query (Remote Command Only)
- 5.2 Meas Control
- 5.3 Mode Setup
- 5.4 Restart
- 5.5 Single
- 5.6 Meas Setup (Adjacent Channel Power—ACP)
- 5.7 Trace/View (ACP Measurement)
- 5.8 Meas Setup (Burst Power)
- 5.9 Trace/View (Burst Power)
- 5.10 Meas Setup (ComplementaryCumulativeDistributionFunction—CCDF)
- 5.11 Display (ComplementaryCumulativeDistributionFunction—CCDF)
- 5.12 SPAN X Scale
- 5.13 Marker (ComplementaryCumulativeDistributionFunction—CCDF)
- 5.14 Meas Setup (Channel Power—CHP)
- 5.15 Trace/View (Channel Power Measurement)
- 5.16 Meas Setup (Harmonic Distortion)
- 5.17 Trace/View (Harmonics)
- 5.18 Meas Setup (Intermod (TOI))
- 5.19 Meas Setup (Multi-Carrier Power—MCP)
- 5.20 Trace/View (Multi-Carrier Power Measurement)
- 5.21 Meas Setup (Occupied Bandwidth—OBW)
- 5.22 Meas Setup (Spectrum Emissions Mask—SEM)
- 5.23 Trace/View (Spectrum Emissions Mask)
- 5.24 Display (Spectrum Emissions Mask—SEM)
- 5.25 SPAN X Scale
- 5.26 Marker (Spectrum Emissions Mask—SEM)
- 5.27 Meas Setup (Spurious Emissions)
- One - Button Measurement Functions
- 5.1 MEASURE (Spectrum Analysis Mode)
- 6 Programming Fundamentals
- SCPI Language Basics
- Improving Measurement Speed
- Turn off the display updates.
- Use binary data format instead of ASCII
- Minimize the number of GPIB transactions.
- Avoid unnecessary use of *RST.
- Put ADC Ranging in Bypass for FFT Measurements
- Minimize DUT/instrument setup changes.
- Consider using LAN instead of GPIB.
- Using an Option Mode: Minimize the number of GPIB transactions.
- Using an Option Mode: Avoid automatic attenuator setting.
- Using an Option Mode: Optimize your GSM output RF spectrum switching measurement.
- Using an Option Mode: Avoid using RFBurst trigger for single burst signals.
- Using an Option Mode: When making power measurements on multiple bursts or slots, use CALCulate:D...
- Programming Command Compatibility Across Model Numbers and Across Modes
- Using the LAN to Control the Instrument
- Programming in C Using the VTL
- Overview of the GPIB Bus
- 7 Using the STATus System
- 8 Menu Maps: Spectrum Analysis
- Alpha Editor Keys, 1 of 2
- AMPLITUDE Y Scale Key, 1 of 2 (
- Auto Couple Key, 1 of 3 (
- BW/Avg Key (
- Det/Demod Key (
- Display Key, 1 of 2 (
- File Key, 1 of 6 (
- FREQUENCY Channel Key (
- Input/Output Key (
- Marker Key (
- menu map:marker to;marker to:menu map
- Marker Fctn Key (
- MODE Key (
- Peak Search Key (
- Preset Key (
- Print Setup Key (
- SPAN X Scale Key (
- SPAN X Scale Key for CCDF Measurement (
- Sweep Key (
- System Key, 1 of 4 (
- Trace/View Key (
- Trig Key (
- 9 Menu Maps: One-Button Measurement Functions
- One-Button Measurement Menu Maps
- MEASURE Key
- Meas Control Key
- Mode Setup Key
- Mode Setup Key (2 of 2)
- ACP Measurement: Meas Setup Key
- ACP Measurement: Trace/View Key
- Burst Power Measurement: Meas Setup Key
- Burst Power Measurement: Trace/View Key
- CCDF (Power Stat) Measurement: Meas Setup Key
- CCDF (Power Stat) Measurement: Trace/View Key
- CCDF (Power Stat) Measurement: Display Key
- CCDF (Power Stat) Measurement: Span X Scale Key
- CCDF (Power Stat) Measurement: Marker Key
- Channel Power Measurement: Meas Setup Key
- Channel Power Measurement: Trace/View Key
- Harmonic Distortion Measurement: Meas Setup Key
- Harmonic Distortion Measurement: Trace/View Key
- Intermod (TOI): Meas Setup Key
- Multi-Carrier Power Measurement: Meas Setup Key
- Multi-Carrier Power Measurement: Trace/View Key
- Occupied Bandwidth Measurement: Meas Setup Key
- Spectrum Emission Mask Measurement: Meas Setup Key
- Spectrum Emission Mask Measurement: Trace/View Key
- Spectrum Emission Mask Measurement: Display Key
- Spectrum Emission Mask Measurement: Span X Scale Key
- Spectrum Emission Mask Measurement: Marker Key
- Spurious Emissions Measurement: Meas Setup Key
- One-Button Measurement Menu Maps
- Index

516 Chapter 6
Programming Fundamentals
Improving Measurement Speed
Programming Fundamentals
1. :STATus:OPERation:EVENt? This query of the operation event
register is to clear the current register contents.
2. :READ:PVT? initiates a measurement (in this example, for GSM
power versus time) using the previous setup. The measurement will
then be waiting for the trigger.
Make sure the attenuation is set manually. Do NOT use automatic
attenuation as this requires an additional burst to determine the
proper attenuation level before the measurement can be made.
3. Create a small loop that will serial poll the instrument for a status
byte value of binary 128. Then wait 1 msec (100 ms if the display is
left on/enabled) before checking again, to keep the bus traffic down.
These two commands are repeated until the condition is set, so we
know that the trigger is armed and ready.
4. TriggeryourDUTtosendtheburst.
5. Return the measurement data to your computer.
This process cannot be done by using with the current VXI plug-n-play
driver implementation. You will need to use the above SCPI commands.
Using an Option Mode: When making power
measurements on multiple bursts or slots, use
CALCulate:DATA<n>:COMPress?
The CALC:DATA:COMP? query is the fastest way to measure power
data for multiple bursts/slots. There are two reasons for this: 1. it can
be used to measure data across multiple, consecutive slots/frames with
just one measurement, instead of a separate measurement on each slot,
and 2. it can pre-process and/or decimate the data so that you only
return the information that you need which minimizes data transfer to
the computer.
For example: let’s say you want to do a power measurement for a GSM
base station where you generate a repeating frame with 8 different
power levels. You can gather all the data with a single
CALC:DATA:COMP? acquisition, using the waveform measurement.
With CALC:DATA2:COMP? MEAN,9,197,1730 you can measure the mean
power in those bursts. This single command will measure the data
across all 8 frames, locate the first slot/burst in each of the frames,
calculate the mean power of those bursts, then return the resulting 8
values.
NOTE For later version of firmware (after A.02.00) you can use equivalent
time values for the CALC:DATA<n>:COMP? query. The command
would then be CALC:DATA2:COMP? MEAN,25us,526us,579.6us,8
Let’s set up the GSM Waveform measurement: