User Manual
Table Of Contents
- PSA Spectrum Analyzers User's and Programmer's Reference
- Table of Contents
- List of Commands
- 1 Using This Document
- 2 Instrument Functions: A - L
- 3 Instrument Functions: M - O
- 4 Instrument Functions: P - Z
- 4.1 Peak Search
- 4.2 Preset
- 4.3 Print
- 4.4 Print Setup
- 4.5 Save
- 4.6 SPAN / X Scale
- 4.7 SWEEP
- 4.8 System
- 4.8.1 Show Errors
- 4.8.2 Power On/Preset
- 4.8.3 Time/Date
- 4.8.4 Alignments
- 4.8.5 Config I/O
- 4.8.6 Reference
- 4.8.7 Show System
- 4.8.8 Show Hdwr
- 4.8.9 Color Palette
- 4.8.10 Diagnostics
- 4.8.11 Restore Sys Defaults
- 4.8.12 Licensing
- 4.8.13 Personality
- 4.8.14 Service
- 4.8.15 Keyboard Lock (Remote Command Only)
- 4.8.16 Remote Message
- 4.8.17 Remote Message Turned Off
- 4.8.18 Power On Elapsed Time (Remote Command Only)
- 4.8.19 SCPI Version Query (Remote Command Only)
- 4.9 Trace/View
- 4.10 Trig
- 5 One-Button Measurement Functions
- 5.1 MEASURE (Spectrum Analysis Mode)
- 5.1.1 Command Interactions: MEASure, CONFigure, FETCh, INITiate and READ
- 5.1.2 Meas Off
- 5.1.3 Channel Power
- 5.1.4 Occupied BW
- 5.1.5 Adjacent Channel Power—ACP
- 5.1.6 Multi-Carrier Power
- 5.1.7 Power Stat CCDF
- 5.1.8 Harmonic Distortion
- 5.1.9 Burst Power
- 5.1.10 Intermod (TOI)
- 5.1.11 Spurious Emissions
- 5.1.12 Spectrum Emission Mask
- 5.1.13 Current Measurement Query (Remote Command Only)
- 5.2 Meas Control
- 5.3 Mode Setup
- 5.4 Restart
- 5.5 Single
- 5.6 Meas Setup (Adjacent Channel Power—ACP)
- 5.7 Trace/View (ACP Measurement)
- 5.8 Meas Setup (Burst Power)
- 5.9 Trace/View (Burst Power)
- 5.10 Meas Setup (ComplementaryCumulativeDistributionFunction—CCDF)
- 5.11 Display (ComplementaryCumulativeDistributionFunction—CCDF)
- 5.12 SPAN X Scale
- 5.13 Marker (ComplementaryCumulativeDistributionFunction—CCDF)
- 5.14 Meas Setup (Channel Power—CHP)
- 5.15 Trace/View (Channel Power Measurement)
- 5.16 Meas Setup (Harmonic Distortion)
- 5.17 Trace/View (Harmonics)
- 5.18 Meas Setup (Intermod (TOI))
- 5.19 Meas Setup (Multi-Carrier Power—MCP)
- 5.20 Trace/View (Multi-Carrier Power Measurement)
- 5.21 Meas Setup (Occupied Bandwidth—OBW)
- 5.22 Meas Setup (Spectrum Emissions Mask—SEM)
- 5.23 Trace/View (Spectrum Emissions Mask)
- 5.24 Display (Spectrum Emissions Mask—SEM)
- 5.25 SPAN X Scale
- 5.26 Marker (Spectrum Emissions Mask—SEM)
- 5.27 Meas Setup (Spurious Emissions)
- One - Button Measurement Functions
- 5.1 MEASURE (Spectrum Analysis Mode)
- 6 Programming Fundamentals
- SCPI Language Basics
- Improving Measurement Speed
- Turn off the display updates.
- Use binary data format instead of ASCII
- Minimize the number of GPIB transactions.
- Avoid unnecessary use of *RST.
- Put ADC Ranging in Bypass for FFT Measurements
- Minimize DUT/instrument setup changes.
- Consider using LAN instead of GPIB.
- Using an Option Mode: Minimize the number of GPIB transactions.
- Using an Option Mode: Avoid automatic attenuator setting.
- Using an Option Mode: Optimize your GSM output RF spectrum switching measurement.
- Using an Option Mode: Avoid using RFBurst trigger for single burst signals.
- Using an Option Mode: When making power measurements on multiple bursts or slots, use CALCulate:D...
- Programming Command Compatibility Across Model Numbers and Across Modes
- Using the LAN to Control the Instrument
- Programming in C Using the VTL
- Overview of the GPIB Bus
- 7 Using the STATus System
- 8 Menu Maps: Spectrum Analysis
- Alpha Editor Keys, 1 of 2
- AMPLITUDE Y Scale Key, 1 of 2 (
- Auto Couple Key, 1 of 3 (
- BW/Avg Key (
- Det/Demod Key (
- Display Key, 1 of 2 (
- File Key, 1 of 6 (
- FREQUENCY Channel Key (
- Input/Output Key (
- Marker Key (
- menu map:marker to;marker to:menu map
- Marker Fctn Key (
- MODE Key (
- Peak Search Key (
- Preset Key (
- Print Setup Key (
- SPAN X Scale Key (
- SPAN X Scale Key for CCDF Measurement (
- Sweep Key (
- System Key, 1 of 4 (
- Trace/View Key (
- Trig Key (
- 9 Menu Maps: One-Button Measurement Functions
- One-Button Measurement Menu Maps
- MEASURE Key
- Meas Control Key
- Mode Setup Key
- Mode Setup Key (2 of 2)
- ACP Measurement: Meas Setup Key
- ACP Measurement: Trace/View Key
- Burst Power Measurement: Meas Setup Key
- Burst Power Measurement: Trace/View Key
- CCDF (Power Stat) Measurement: Meas Setup Key
- CCDF (Power Stat) Measurement: Trace/View Key
- CCDF (Power Stat) Measurement: Display Key
- CCDF (Power Stat) Measurement: Span X Scale Key
- CCDF (Power Stat) Measurement: Marker Key
- Channel Power Measurement: Meas Setup Key
- Channel Power Measurement: Trace/View Key
- Harmonic Distortion Measurement: Meas Setup Key
- Harmonic Distortion Measurement: Trace/View Key
- Intermod (TOI): Meas Setup Key
- Multi-Carrier Power Measurement: Meas Setup Key
- Multi-Carrier Power Measurement: Trace/View Key
- Occupied Bandwidth Measurement: Meas Setup Key
- Spectrum Emission Mask Measurement: Meas Setup Key
- Spectrum Emission Mask Measurement: Trace/View Key
- Spectrum Emission Mask Measurement: Display Key
- Spectrum Emission Mask Measurement: Span X Scale Key
- Spectrum Emission Mask Measurement: Marker Key
- Spurious Emissions Measurement: Meas Setup Key
- One-Button Measurement Menu Maps
- Index

Chapter 6 513
Programming Fundamentals
Improving Measurement Speed
Programming Fundamentals
Avoid unnecessary use of *RST.
Remember that while *RST does not change the current Mode, it
presets all the measurements and settings to their factory defaults.
This forces you to reset your analyzer’s measurement settings even if
they use similar mode setup or measurement settings. See Minimize
DUT/instrument setup changes. below. (Also note that *RST may put
the instrument in single measurement/sweep for some modes.)
Put ADC Ranging in Bypass for FFT Measurements
Setting ADC ranging to the Bypass mode can speed FFT measurements
up by 10% to 50%. (Use ADC:RANG NONE) Bypass allows triggered
FFT measurements to occur at the trigger time instead of following an
autoranging time, so it can improve measurement speed. It does,
however, add additional noise degrading your signal to noise level, so it
should be used carefully.
Minimize DUT/instrument setup changes.
• Some instrument setup parameters are common to multiple
measurements. You should look at your measurement process with
an eye toward minimizing setup changes. If your test process
involves nested loops, make sure that the inner-most loop is the
fastest. Also, check if the loops could be nested in a different order to
reduce the number of parameter changes as you step through the
test.
• Are you are using the measurements under the
MEASURE key?
Remember that if you have already set your Meas Setup parameters
for a measurement, and you want to make another one of these
measurements later, use READ:<meas>?. The MEASure:<meas>?.
command resets all the settings to the defaults, while READ changes
back to that measurement without changing the setup parameters
from the previous use.
• Are you are using the Measurements under the
MEASURE key?
Remember that Mode Setup parameters remain constant across all
the measurements in that mode (e.g. center/channel frequency,
amplitude, radio standard, input selection, trigger setup). You don’t
have to re-initialize them each time you change to a different
measurement.