User Manual
Table Of Contents
- PSA Spectrum Analyzers User's and Programmer's Reference
- Table of Contents
- List of Commands
- 1 Using This Document
- 2 Instrument Functions: A - L
- 3 Instrument Functions: M - O
- 4 Instrument Functions: P - Z
- 4.1 Peak Search
- 4.2 Preset
- 4.3 Print
- 4.4 Print Setup
- 4.5 Save
- 4.6 SPAN / X Scale
- 4.7 SWEEP
- 4.8 System
- 4.8.1 Show Errors
- 4.8.2 Power On/Preset
- 4.8.3 Time/Date
- 4.8.4 Alignments
- 4.8.5 Config I/O
- 4.8.6 Reference
- 4.8.7 Show System
- 4.8.8 Show Hdwr
- 4.8.9 Color Palette
- 4.8.10 Diagnostics
- 4.8.11 Restore Sys Defaults
- 4.8.12 Licensing
- 4.8.13 Personality
- 4.8.14 Service
- 4.8.15 Keyboard Lock (Remote Command Only)
- 4.8.16 Remote Message
- 4.8.17 Remote Message Turned Off
- 4.8.18 Power On Elapsed Time (Remote Command Only)
- 4.8.19 SCPI Version Query (Remote Command Only)
- 4.9 Trace/View
- 4.10 Trig
- 5 One-Button Measurement Functions
- 5.1 MEASURE (Spectrum Analysis Mode)
- 5.1.1 Command Interactions: MEASure, CONFigure, FETCh, INITiate and READ
- 5.1.2 Meas Off
- 5.1.3 Channel Power
- 5.1.4 Occupied BW
- 5.1.5 Adjacent Channel Power—ACP
- 5.1.6 Multi-Carrier Power
- 5.1.7 Power Stat CCDF
- 5.1.8 Harmonic Distortion
- 5.1.9 Burst Power
- 5.1.10 Intermod (TOI)
- 5.1.11 Spurious Emissions
- 5.1.12 Spectrum Emission Mask
- 5.1.13 Current Measurement Query (Remote Command Only)
- 5.2 Meas Control
- 5.3 Mode Setup
- 5.4 Restart
- 5.5 Single
- 5.6 Meas Setup (Adjacent Channel Power—ACP)
- 5.7 Trace/View (ACP Measurement)
- 5.8 Meas Setup (Burst Power)
- 5.9 Trace/View (Burst Power)
- 5.10 Meas Setup (ComplementaryCumulativeDistributionFunction—CCDF)
- 5.11 Display (ComplementaryCumulativeDistributionFunction—CCDF)
- 5.12 SPAN X Scale
- 5.13 Marker (ComplementaryCumulativeDistributionFunction—CCDF)
- 5.14 Meas Setup (Channel Power—CHP)
- 5.15 Trace/View (Channel Power Measurement)
- 5.16 Meas Setup (Harmonic Distortion)
- 5.17 Trace/View (Harmonics)
- 5.18 Meas Setup (Intermod (TOI))
- 5.19 Meas Setup (Multi-Carrier Power—MCP)
- 5.20 Trace/View (Multi-Carrier Power Measurement)
- 5.21 Meas Setup (Occupied Bandwidth—OBW)
- 5.22 Meas Setup (Spectrum Emissions Mask—SEM)
- 5.23 Trace/View (Spectrum Emissions Mask)
- 5.24 Display (Spectrum Emissions Mask—SEM)
- 5.25 SPAN X Scale
- 5.26 Marker (Spectrum Emissions Mask—SEM)
- 5.27 Meas Setup (Spurious Emissions)
- One - Button Measurement Functions
- 5.1 MEASURE (Spectrum Analysis Mode)
- 6 Programming Fundamentals
- SCPI Language Basics
- Improving Measurement Speed
- Turn off the display updates.
- Use binary data format instead of ASCII
- Minimize the number of GPIB transactions.
- Avoid unnecessary use of *RST.
- Put ADC Ranging in Bypass for FFT Measurements
- Minimize DUT/instrument setup changes.
- Consider using LAN instead of GPIB.
- Using an Option Mode: Minimize the number of GPIB transactions.
- Using an Option Mode: Avoid automatic attenuator setting.
- Using an Option Mode: Optimize your GSM output RF spectrum switching measurement.
- Using an Option Mode: Avoid using RFBurst trigger for single burst signals.
- Using an Option Mode: When making power measurements on multiple bursts or slots, use CALCulate:D...
- Programming Command Compatibility Across Model Numbers and Across Modes
- Using the LAN to Control the Instrument
- Programming in C Using the VTL
- Overview of the GPIB Bus
- 7 Using the STATus System
- 8 Menu Maps: Spectrum Analysis
- Alpha Editor Keys, 1 of 2
- AMPLITUDE Y Scale Key, 1 of 2 (
- Auto Couple Key, 1 of 3 (
- BW/Avg Key (
- Det/Demod Key (
- Display Key, 1 of 2 (
- File Key, 1 of 6 (
- FREQUENCY Channel Key (
- Input/Output Key (
- Marker Key (
- menu map:marker to;marker to:menu map
- Marker Fctn Key (
- MODE Key (
- Peak Search Key (
- Preset Key (
- Print Setup Key (
- SPAN X Scale Key (
- SPAN X Scale Key for CCDF Measurement (
- Sweep Key (
- System Key, 1 of 4 (
- Trace/View Key (
- Trig Key (
- 9 Menu Maps: One-Button Measurement Functions
- One-Button Measurement Menu Maps
- MEASURE Key
- Meas Control Key
- Mode Setup Key
- Mode Setup Key (2 of 2)
- ACP Measurement: Meas Setup Key
- ACP Measurement: Trace/View Key
- Burst Power Measurement: Meas Setup Key
- Burst Power Measurement: Trace/View Key
- CCDF (Power Stat) Measurement: Meas Setup Key
- CCDF (Power Stat) Measurement: Trace/View Key
- CCDF (Power Stat) Measurement: Display Key
- CCDF (Power Stat) Measurement: Span X Scale Key
- CCDF (Power Stat) Measurement: Marker Key
- Channel Power Measurement: Meas Setup Key
- Channel Power Measurement: Trace/View Key
- Harmonic Distortion Measurement: Meas Setup Key
- Harmonic Distortion Measurement: Trace/View Key
- Intermod (TOI): Meas Setup Key
- Multi-Carrier Power Measurement: Meas Setup Key
- Multi-Carrier Power Measurement: Trace/View Key
- Occupied Bandwidth Measurement: Meas Setup Key
- Spectrum Emission Mask Measurement: Meas Setup Key
- Spectrum Emission Mask Measurement: Trace/View Key
- Spectrum Emission Mask Measurement: Display Key
- Spectrum Emission Mask Measurement: Span X Scale Key
- Spectrum Emission Mask Measurement: Marker Key
- Spurious Emissions Measurement: Meas Setup Key
- One-Button Measurement Menu Maps
- Index

Chapter 3 193
Instrument Functions: M - O
Marker Fctn
Instrument Functions: M - O
To guarantee accurate data for noise-like signals, a correction for equivalent noise
bandwidth is made by the analyzer. The Marker Noise function accuracy is best when the
detector is set to Average or Sample, because neither of these detectors will peak-bias the
noise. The trade off between sweep time and variance of the result is best when
Avg/VBW
Type
is set to Power Averaging. Auto coupling, therefore, normally chooses the Average
detector and Power Averaging. The Marker Noise function works with all settings of detector
and Avg/VBW Type, but using the positive or negative peak detectors does not gives less
accurate measurement results.
Note that the value when the Y-axis units are watts is the square of the value when the
Y-axis units are volts. For example, when the percent ratio with Y-axis units in volts is 20%
(0.2), the percent ratio with Y-axis units in watts will be 4% (0.2
2
= 0.04). When you read
the value out remotely you have to know whether you are in log (dB) or linear (percent),
and if linear, whether volts or watts.
Key Path:
Marker Fctn
Dependencies/
Couplings: Video triggering is not available when the detector is Average,therefore
marker functions that would set the detector to Average, and thus conflict
withvideotriggering,arenotavailablewhentheVideo trigger is On.
Remote Command:
See
“Marker Fctn” on page 191 for the command to select a function.
Example: CALC:MARK:FUNC NOIS turns on marker 1 as a noise marker.
CALC:MARK:FUNC? returns the current setting of marker function for the
marker specified. In this case it returns the string: NOIS.
CALC:MARK:Y? returns the y-axis value of the
Marker Noise function for
marker 1 (if Marker Noise isONformarker1).
3.2.3 Band/Intvl Power
Measures the power in a bandwidth (non-zero span) or time interval (zero span) specified
by the user. If no marker is on, this key activates the delta pair marker mode. If the
detector mode is set to Auto, the average detector is selected. If the Avg/VBW type is set to
Auto, Power Averaging is selected, other choices of detector and Avg/VBW type will usually
cause measurement inaccuracy. The active marker pair indicate the edges of the band.
Only
Delta Pair and Span Pair marker control modes can be used while in this function,
selecting any other mode (for example,
Normal or Delta) turns off this function.
Key Path:
Marker Fctn
Dependencies/
Couplings:
Video triggering is not available when the detector is Average,therefore,
marker functions that would set the detector to Average, and thus conflict
withvideotriggering,arenotavailablewhentheVideo trigger is On.
Selecting
Band/Intvl Power when the marker control function is off, normal,
or delta will set the marker control function to delta pair.