User`s guide
Table Of Contents
- User’s Guide
- 1 Getting Started
- 2 Introduction
- 3 Installation
- 4 Using EasyEXPERT
- 5 Classic Test Definition
- I/V Sweep
- Multi Channel I/V Sweep
- I/V List Sweep
- I/V-t Sampling
- C-V Sweep
- Direct Control
- Function Setup
- Auto Analysis Setup
- Display Setup
- SMU Range Setup Window
- ADC and Integration Time Setup Window
- Advanced Setup Window
- CMU Range Setup Window
- Advanced Setup Window for C-V Sweep
- Switching Matrix Control
- SPGU Control
- SPGU Pulse Setup Window
- Load Z Setup Window
- Pulse Switch Setup Window
- SPGU ALWG Setup Window
- Define ALWG Waveform Window
- 6 Application Test Definition
- 7 Function Details
- I/V Sweep Measurement
- Multi Channel I/V Sweep Measurement
- I/V-t Sampling Measurement
- C-V Sweep Measurement
- SPGU Module
- Sweep Abort Function
- Standby Function
- Bias Hold Function
- Current Offset Cancel
- SMU CMU Unify Unit
- Atto Sense and Switch Unit
- SMU/PG Selector
- SMU Ranging Mode
- SMU Compliance
- SMU Pulse
- SMU Measurement Time
- SMU Filter
- SMU Series Resistor
- Interlock Function
- Auto Power Off Function
- Initial Settings
- 8 Built-in Programming Tool
- 9 If You Have a Problem
- When You Operate B1500A
- When You Perform Measurement
- Measurement Takes More Time than Specified
- Noise Affects the Measured Values
- Voltage Measurement Error is Large
- SMU Oscillates for High-Frequency Device Measurements
- SMU Oscillates for Negative Resistance Measurements
- Large Current Causes High Temperature (Thermal Drift)
- Measurement Damages the Device under Test
- Leaving Connections Damages Devices after Measurement
- Unexpected Sampling Measurement Data is Returned
- MFCMU Causes Unbalance Condition
- Before Shipping to Service Center
- Data Backup and Recovery
- B1500A System Recovery
- Updating EasyEXPERT
- Error Codes
- 10 Application Library and Utilities

Agilent B1500 User’s Guide, Edition 7 9-9
If You Have a Problem
When You Perform Measurement
SMU Oscillates for Negative Resistance Measurements
If the DUT has negative resistance characteristics, SMUs may oscillate. Because the
positive feedback may be configured by the DUT and the SMUs.
To solve this problem:
• For voltage controlled negative resistance device
• Connect G in parallel with your DUT to cancel negative resistance. To
obtain an ou
tput I-V curve, use the following equation.
IY = I - G × V
• For current controlled negative resistance device
• Connect R in series with your DUT to cancel negative resistance. To obtain
an output I-V
curve, use the following equation.
VZ = V - R × I
• If the resistance of the DUT is less than 1 MΩ, you can use a se
ries resistor
built into the SMU.