User's Manual
Table Of Contents
- Table of Contents
- System Description
- Microwave Path Engineering Basics
- Engineering Guidelines
- Network Turnup Procedure
- User Interface Guide
- 1. Navigating the Terminal Menu
- 2. Menu and System Control
- 3. Menu Descriptions
- > System Status
- > Main Menu
- > System Configuration
- > RF Link Configuration
- > RF Link Performance History (Main Screen)
- > RF Link Error History
- > RF Link Max/Min Received Power History
- > RF Link Min/Max Received Signal Quality History
- > Datapath Provisioning
- > 4xE1 Module Configuration/Status/History (Main Screen)
- > E1x Status/Configuration/Loopback
- > E1x Performance History
- > T1 Module Configuration/Status/History (Main Screen)
- > T1x Status/Configuration/Loopback
- > Ethernet Switch Module Configuration/Status/History (Main Screen)
- > Ethernet Switch Configuration
- > Ethernet Switch Status
- > Management/Utilities (Main Screen)
- > Ping Utility
- > Firmware Upgrade Utility
- > RF Link Management Bridge Configuration
- > System Alarms
- Detail Level Procedures
- MIBs
- Troubleshooting Guide
- 1. Overview
- 2. LED Indicators
- PWR LED
- TST LED
- RF DWN LED
- RF LOW LED
- T1 Interface Alarms
- E1 Interface Alarms
- 1. Display the E1(x) Status screen and check the E1(x) Interface Alarm field to identify the active alarm.
- 1. Verify that the E1 cable is connected to the E1 interface on the TRACER 64x0.
- 2. Verify the connections at the opposite end of the E1 cable.
- 3. Verify that the framing mode (framed, multiframed, or unframed) is the same for both the TRACER 64x0 and the E1 equipment.
- 2. Verify the cable connections for the E1 interface are solid.
- 2. Verify the cable connections for the E1 interface are solid.
- LAN LEDs
- 3. RF Errors
- 4. Step-by-Step Troubleshooting
- 5. Installing/Troubleshooting the TRACER Hardware
TRACER 6000 Series Integrated System Manual Section 2 Microwave Path Engineering Basics
612806420L1-1D Copyright © 2005 ADTRAN, Inc. 23
5. RECEIVER SENSITIVITY
Receiver sensitivity is a value expressed in decibels referenced to one milliwatt (dBm) that corresponds to
the minimum amount of signal power needed at the receiver to achieve a given bit error rate (BER).
Receiver sensitivity is usually a negative number of decibels, and smaller receiver sensitivity (higher
quantity negative number) is better for a given BER. Several factors affect receiver sensitivity, including
the data bandwidth of the wireless link and the amount of additional signal degradation introduced in the
receiver electronics.
Receiver sensitivity of the TRACER 64x0 is dynamic as a function of the desired bandwidth; receiver
sensitivity improves as delivered bandwidth decreases. TRACER bandwidth is provided in the form of
eight channels available for mapping to the support modules. For T1 and E1 modules, each channel
mapped represents a single T1 or E1 interface. For Quad Ethernet Switch modules, each channel mapped
represents 2 Mb of Ethernet data delivered to the module. In situations where eight-channel connectivity is
not required, the delivered bandwidth can be decreased to four or two channels, and the receiver sensitivity
improves as follows:
Table 8. Path Loss for Given Path Lengths (kilometers)
Path Length
(kilometers)
Path Loss (dB)
at 2.4 GHz
Path Loss (dB)
at 5.8 GHz
1 100 108
2 106 114
3 110 117
4 112 120
5 114 122
10 120 128
15 124 131
20 126 134
25 128 136
30 130 137
35 131 139
Table 9. Receiver Sensitivity for the TRACER 64x0
Delivered Bandwidth
Receiver Sensitivity
TRACER 6410 TRACER 6420
8xT1 -86 dBm -85 dBm
4xT1 -89 dBm -89 dBm
2xT1 -93 dBm -92 dBm
8xE1 or 16 Mbps Ethernet -84 dBm -83 dBm
4xE1 or 8 Mbps Ethernet -87 dBm -87 dBm
2xE1 or 4 Mbps Ethernet -90 dBm -90 dBm
Should an interferer be present nearby, three software-selectable band plans are provided
for frequency agility. Changing the TRACER 64x0 band plan does not require additional
components or opening of the radio. See > RF Link Configuration > RF Band Plan on
page 64 for additional details.