User's Manual
Table Of Contents
- SECTION 1 General Information
- SECTION 2 InterReach Fusion System Description
- SECTION 3 Fusion Main Hub
- SECTION 4 Fusion Expansion Hub
- SECTION 5 Remote Access Unit
- SECTION 6 Designing a Fusion Solution
- 6.1 Overview
- 6.2 Downlink RSSI Design Goal
- 6.3 Maximum Output Power per Carrier
- 6.3.2 700 MHz (Upper C)
- 6.4 System Gain
- 6.5 Estimating RF Coverage
- 6.6 Link Budget Analysis
- 6.6.1 Elements of a Link Budget for Narrowband Standards
- 6.7 Optical Power Budget
- 6.8 Connecting a Main Hub to a Base Station
- 6.8.1 Uplink Attenuation
- 6.8.2 RAU Attenuation and ALC
- SECTION 7 Installing Fusion
- 7.1 Installation Requirements
- 7.1.2 Cable and Connector Requirements
- 7.1.3 Distance Requirements
- 7.2 Safety Precautions
- 7.2.1 Installation Guidelines
- 7.2.2 General Safety Precautions
- 7.2.3 Fiber Port Safety Precautions
- 7.3 Preparing for System Installation
- 7.3.1 Pre-Installation Inspection
- 7.3.2 Installation Checklist
- 7.3.3 Tools and Materials Required
- 7.3.4 Optional Accessories
- 7.4 Fusion Installation Procedures
- 7.4.1 Installing a Fusion Main Hub
- 7.4.3 Installing RAUs
- 7.4.4 Configuring the System
- 7.5 Splicing Fiber Optic Cable
- 7.6 Interfacing the Fusion Main Hub to an RF Source
- 7.6.1 Connecting a Single Fusion Main Hub to an RF Source
- 7.7 Connecting Contact Alarms to a Fusion System
- 7.8 Alarm Monitoring Connectivity Options
- 7.8.1 Direct Connection
- 7.8.5 Ethernet RF Modem
- SECTION 8 Replacing Fusion Components
- SECTION 9 Maintenance, Troubleshooting, and Technical Assistance
- APPENDIX A Cables and Connectors
- APPENDIX B Compliance
- APPENDIX C Faults, Warnings, Status Tables for Fusion, Fusion Wideband, Fusion SingleStar
Link Budget Analysis
6-32 InterReach Fusion Installation, Operation, and Reference Manual
CONFIDENTIAL D-620610-0-20 Rev F
P
TX
+ P
RX
= –76 dBm (for PCS, J-STD-008)
where P
TX
is the mobile’s transmitted power and P
RX
is the power received by the
mobile.
The power level transmitted under closed-loop power control is adjusted by the base
station to achieve a certain E
b
/N
0
(explained in Table 6-26 on page 6-32). The differ-
ence between these power levels,
P
, can be estimated by comparing the power radi-
ated from the RAU, P
downink
, to the minimum received signal, P
uplink
, at the RAU:
P
= P
downink
+ P
uplink
+ 73 dBm (for Cellular)
P
= P
downink
+ P
uplink
+ 76 dBm (for PCS)
It’s a good idea to keep –12 dB <
P
< 12 dB.
Table 6-26 provides link budget considerations for CDMA systems.
Table 6-26 Additional Link Budget Considerations for CDMA
Consideration Description
Power
per carrier,
downlink
This depends on how many channels are active. For example, the signal is about 7 dB lower if only the
pilot, sync, and paging channels are active compared to a fully-loaded CDMA signal. Furthermore, in the
CDMA forward link, voice channels are turned off when the user is not speaking. On average this is
assumed to be about 50% of the time. So, in the spreadsheet, both the power per Walsh code channel (rep-
resenting how much signal a mobile will receive on the Walsh code that it is de-spreading) and the total
power are used.
The channel power is needed to determine the maximum path loss, and the total power is needed to deter-
mine how hard the Fusion system is being driven.
The total power for a fully-loaded CDMA signal is given by (approximately):
total power =
voice channel power + 13 dB + 10log
10
(50%)
= voice channel power + 10 dB
Information Rate This is simply
10log
10
(9.6 Kbps) = 40 dB for rate set 1
10log
10
(14.4 Kbps) = 42 dB for rate set 2
Process Gain The process of de-spreading the desired signal boosts that signal relative to the noise and interference.
This gain needs to be included in the link budget. In the following formulas, P
G
= process gain:
P
G
= 10log
10
(1.25 MHz / 9.6 Kbps) = 21 dB rate set 1
P
G
= 10log
10
(1.25 MHz / 14.4 Kbps) = 19 dB rate set 2
Note that the process gain can also be expressed as 10log
10
(CDMA bandwidth) minus the information
rate.
Eb/No This is the energy-per-bit divided by the received noise and interference. It’s the CDMA equivalent of sig-
nal-to-noise ratio (SNR). This figure depends on the mobile’s receiver and the multipath environment.
If the receiver noise figure is NF (dB), then the receive sensitivity (dBm) is given by:
P
sensitivity
= NF + E
b
/N
o
+ thermal noise in a 1.25 MHz band – P
G
= NF + E
b
/N
o
– 113 (dBm/1.25 MHz) – P
G