Data Sheet
Table Of Contents
- 1.0 Electrical Characteristics
- 2.0 Typical Performance Curves
- Figure 2-1: DNL vs. Code.
- Figure 2-2: DNL vs. Code and Ambient Temperature.
- Figure 2-3: Absolute DNL vs. Ambient Temperature.
- Figure 2-4: INL vs. Code and Ambient Temperature.
- Figure 2-5: Absolute INL vs. Ambient Temperature.
- Figure 2-6: INL vs. Code.
- Figure 2-7: Full-Scale VOUTA w/G = 1 (VREF) vs. Ambient Temperature and VDD.
- Figure 2-8: Full-Scale VOUTA w/G = 2 (2VREF) vs.Ambient Temperature and VDD.
- Figure 2-9: Output Noise Voltage Density (VREF Noise Density w/G = 1) vs. Frequency.
- Figure 2-10: Output Noise Voltage (VREF Noise Voltage w/G = 1) vs. Bandwidth.
- Figure 2-11: MCP4821 IDD vs. Ambient Temperature and VDD.
- Figure 2-12: MCP4821 IDD Histogram (VDD = 2.7V).
- Figure 2-13: MCP4821 IDD Histogram (VDD = 5.0V).
- Figure 2-14: MCP4822 IDD vs. Ambient Temperature and VDD.
- Figure 2-15: MCP4822 IDD Histogram (VDD = 2.7V).
- Figure 2-16: MCP4822 IDD Histogram (VDD = 5.0V).
- Figure 2-17: Hardware Shutdown Current vs. Ambient Temperature and VDD.
- Figure 2-18: Software Shutdown Current vs. Ambient Temperature and VDD.
- Figure 2-19: Offset Error vs. Ambient Temperature and VDD.
- Figure 2-20: Gain Error vs. Ambient Temperature and VDD.
- Figure 2-21: VIN High Threshold vs. Ambient Temperature and VDD.
- Figure 2-22: VIN Low Threshold vs. Ambient Temperature and VDD.
- Figure 2-23: Input Hysteresis vs. Ambient Temperature and VDD.
- Figure 2-24: VOUT High Limit vs. Ambient Temperature and VDD.
- Figure 2-25: VOUT Low Limit vs. Ambient Temperature and VDD.
- Figure 2-26: IOUT High Short vs. Ambient Temperature and VDD.
- Figure 2-27: IOUT vs. VOUT. Gain = 2.
- Figure 2-28: VOUT Rise Time 100%.
- Figure 2-29: VOUT Fall Time.
- Figure 2-30: VOUT Rise Time 50%.
- Figure 2-31: VOUT Rise Time 25% - 75%.
- Figure 2-32: VOUT Rise Time Exit Shutdown.
- Figure 2-33: PSRR vs. Frequency.
- 3.0 Pin descriptions
- 4.0 General Overview
- 5.0 Serial Interface
- 6.0 Typical Applications
- 6.1 Digital Interface
- 6.2 Power Supply Considerations
- 6.3 Output Noise Considerations
- 6.4 Layout Considerations
- 6.5 Single-Supply Operation
- 6.6 Bipolar Operation
- 6.7 Selectable Gain and Offset Bipolar Voltage Output Using A Dual DAC
- 6.8 Designing A Double-Precision DAC Using A Dual DAC
- 6.9 Building A Programmable Current Source
- 7.0 Development support
- 8.0 Packaging Information

© 2005 Microchip Technology Inc. DS21953A-page 25
MCP4821/MCP4822
6.9 Building A Programmable Current
Source
Example 6-6 illustrates a variation on a voltage follower
design where a sense resistor is used to convert the
DAC’s voltage output into a digitally-selectable current
source.
Adding the resistor network from Example 6-2 would
be advantageous in this application. The smaller
R
SENSE
is, the less power dissipated across it.
However, this also reduces the resolution that the
current can be controlled with. The voltage divider, or
“window”, DAC configuration would allow the range to
be reduced, thus increasing resolution around the
range of interest. When working with very small sensor
voltages, plan on eliminating the amplifier's offset error
by storing the DAC's setting under known sensor
conditions.
EXAMPLE 6-6: Digitally-Controlled Current
Source.
MCP482X
R
sense
I
b
Load
I
L
V
DD
SPI™
3
V
CC
+
V
CC
–
V
OUT
G = Gain select (1x or 2x)
D = Digital value of DAC (0 – 4096)
I
L
V
OUT
R
sense
---------------
β
β 1+
------------
×=
V
OUT
2.048V G
D
2
12
-------
⋅=
I
b
I
L
β
----
=